# GCSE Maths - Probability 

## Conditional Probability (Higher)

## Worksheet

NOTES


This worksheet will show you how to work out different types of conditional probability questions. Each section contains a worked example, a question with hints and then questions for you to work through on your own.

## Section A

## Worked Example

The table below shows information about students' pets. A boy is chosen at random from the class. Find the probability that this boy also has a dog.

|  | Cat | Dog | No Pet | Total |
| :---: | :---: | :---: | :---: | :---: |
| Boy | 14 | 3 | 10 |  |
| Girl | 11 | 4 | 8 |  |
| Total | 25 |  | 18 | 50 |

Step 1: Find how many boys are in the class
Sum together the values in the row corresponding to pets of boys.

$$
14+3+10=27
$$

There are 27 boys in total.

As we know that the chosen student is a boy, the probability is out of the total number of boys. Thus, the probability will be out of 27.

Step 2: Using the table, identify how many boys also have a dog.
Looking at the row corresponding to boys' pets, there are 3 boys who have a dog.

Step 3: Calculate the required probability.
Out of the 27 boys, 3 have a dog.
$P($ Chosen student has a dog given they are a boy $)=\frac{3}{27}=\frac{1}{9}$

## Guided Example

The table below shows information about students' pets. A student who owns a cat is chosen at random in the class. Find the probability that this student is also a boy

|  | Cat | Dog | No Pet | Total |
| :---: | :---: | :---: | :---: | :---: |
| Boy | 14 | 3 | 10 |  |
| Girl | 11 | 4 | 8 |  |
| Total |  |  |  | 50 |

Step 1: Calculate how many students in the class own a cat

Step 2: Identify how many boys own a cat.

Step 3: Calculate the required probability.

## Now it's your turn!

If you get stuck, look back at the worked and guided examples.

1. The table below shows information about students' pets. A student who doesn't have a pet is chosen at random. Calculate the probability that they are a boy.

|  | Cat | Dog | No Pet | Total |
| :---: | :---: | :---: | :---: | :---: |
| Boy | 14 | 3 | 10 |  |
| Girl | 11 | 4 | 8 |  |
| Total |  |  |  | 50 |

2. The table below gives information about the results of peoples' driving tests. A boy is chosen at random. Calculate the probability that he passed his test.

|  | Pass | Fail | Total |
| :---: | :---: | :---: | :---: |
| Boy |  | 3 |  |
| Girl | 21 | 9 | 30 |
| Total | 60 |  | 72 |

3. The table below gives information about the sports people play. A girl is chosen at random. Calculate the probability that she plays tennis.

|  | Football | Tennis | Netball | Total |
| :---: | :---: | :---: | :---: | :---: |
| Boy |  | 18 |  | 30 |
| Girl |  | 12 |  |  |
| Total | 15 | 30 | 25 |  |

4. The table below gives information about the languages that students study. A boy is chosen at random. Calculate the probability that he studies French.

|  | French | German | Spanish | Total |
| :---: | :---: | :---: | :---: | :---: |
| Boy |  | 2 |  |  |
| Girl | 7 |  | 12 |  |
| Total | 10 | 5 | 25 |  |

## Section B

## Worked Example

Below is a Venn diagram showing events $A$ and $B$. Calculate $P(B \mid A)$


Step 1: Identify the probability which is being asked for.
The question is asking you to find $P(B \mid A)$ which is the probability of an outcome being in $B$ given that it is already in A.

Note, there are $2+3+8+12=25$ units allocated in the Venn diagram.

Step 2: Calculate $P(A)$.

$$
8+3=11
$$

There are 11 units in $A$ so $P(A)=\frac{11}{25}$.

Step 3: Calculate $P(A \cap B)$.
There are 8 in the intersection between $A$ and $B$, so

$$
A \cap B=8
$$

Hence, $P(A \cap B)=\frac{8}{25}$.

Step 4: Calculate the required probability using the formula for conditional probability.

$$
\begin{aligned}
& P(B \mid A)=\frac{P(A \cap B)}{P(A)} \\
& P(B \mid A)=\frac{\frac{8}{25}}{\frac{11}{25}}=\frac{8}{11}
\end{aligned}
$$

## Guided Example

Let A denote the event that someone plays rugby and let B denote the event that someone plays football. Calculate the probability that someone plays rugby given that they play one of the two sports.


Step 1: Identify the probability which is being asked for.

Step 2: Calculate $P(A)$.

Step 3: Calculate $P(A \cup B)$.

Step 4: Calculate the required probability using the formula for conditional probability.

## Now it's your turn!

If you get stuck, look back at the worked and guided examples.
5. Consider the following Venn diagram which shows the number of people partaking in hockey club and swimming club. Karen attends swimming club. What is the probability that she does not attend hockey club?

6. The following Venn diagram shows the number of people who play violin and piano. Calculate the probability someone plays neither instrument, given they don't play piano.

7. The following Venn diagram shows the numbers of people who study languages in a class. A student is selected and found to study a language. Find the probability that they study Russian.

8. The following Venn diagram shows the numbers of people have certain pets. A student is selected and found to own a cat. What is the probability that they also own a dog?


## Section C

## Worked Example

There are 3 blue balls and 6 red balls in a bag. Calculate the probability of picking out a red ball given that a red ball was just taken out.

Step 1: Draw the required tree diagram.

Step 2: Identify the branches required for the given question.

The question asks about a red ball being chosen, given a red ball has already been chosen. This means we are interested in the path of 'Red' followed by 'Red'.

Step 3: Find the probability of obtaining a red ball after a red ball is taken out by reading the probability of the required branch.
$P($ Red ball given a red ball just taken $)=\frac{5}{8}$

Second selection


## Guided Example

There are 5 sweets and 9 chocolates in a bag. Calculate the probability of obtaining a sweet given that a chocolate was just taken out.

Step 1: Draw a tree diagram.

Step 2: Identify the branches required for the given question.

Step 3: Find the probability of obtaining a sweet after a chocolate is taken out by reading the probability of the correct path.

Now it's your turn!
If you get stuck, look back at the worked and guided examples.

1. There are 2 yellow marbles, 3 red marbles and 6 blue marbles in a bag. A marble is selected and found to be yellow. Given that this marble is not returned to the bag, find the probability that a yellow marble is chosen in a second selection.
2. There are 2 yellow marbles, 11 red marbles and 17 blue marbles in a bag. A marble is chosen from the bag. Given that it is not a blue marble, what is the probability that it is a yellow marble?
3. There are 10 pink, 7 yellow and 9 purple mini eggs in a bag. Calculate the probability that 2 pink mini eggs are chosen in a row. Note, the first mini egg chosen is eaten and so does not get returned to the bag.
4. There are 10 pink, 7 yellow, 4 blue and 9 purple mini eggs in a bag. A mini egg is chosen from the bag. Given that it is not blue or pink, calculate the probability that the chosen egg is purple.
